Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

cis-Bis(acetato- κ O)bis(dimethyl sulfide- κ S) platinum(II)

Christian Hansson* and Åke Oskarsson

Organic Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
Correspondence e-mail: christian.hansson@organic.lu.se

Received 9 November 2007
Accepted 21 November 2007
Online 14 December 2007
The title compound, cis- $\left[\operatorname{Pt}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{2}\right]$, crystallizes in the $P 2_{1} / c$ space group with a pseudo-square-planar coordination geometry. The complex forms centrosymmetric dimeric packing units, with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}-\mathrm{Pt}$ interactions and a short Pt \cdots Pt distance [3.5868 (2) Å]. The coordination mode of the acetate ligands is monodentate and they are oriented almost perpendicular to the coordination plane. Cambridge Structural Database [Allen (2002). Acta Cryst. B58, 380-388] data show a preferred staggered conformation with respect to the coordination plane for $\mathrm{Me}_{2} \mathrm{~S}$ in complexes with $\mathrm{Pt}^{\mathrm{II}}$.

Comment

No diacetatoplatinum(II) complex with sulfur donor ligands has previously been reported to the Cambridge Structural Database (CSD; Version 5.28 of November 2006; Allen, 2002). Out of 13 acetatoplatinum(II) complexes found in the CSD, eight contain acetate ligands that bridge two platinum(II) ions (in one case one acetate ligand coordinates to three platinum ions), two are cis and two trans complexes, and one complex contains a single acetate ligand. Only one diacetatoplatinum(II) complex with nonbridging acetate ligands and identical nonchelating neutral ligands is reported, viz. trans$\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Basato et al., 2003). Acetate and nitrate ions are topologically related, and the structure of cis$\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}\right]$ has recently been reported (Hansson \& Oskarsson, 2007). We report here the crystal structure of the title compound with emphasis on: (i) the coordination mode of the acetate ion compared with the nitrate ion; (ii) the packing of the title compound in relation to other $\left[\operatorname{Pt} X_{2} L_{2}\right]$ compounds, X being a ligand with a -1 charge and L being a neutral ligand; and (iii) the coordination mode of dimethyl sulfide (dms) in relation to other $\left[\mathrm{Pt}^{\mathrm{II}} A_{4-n}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{n}\right]$ (where A is any ligand and $n=1-4$) complexes.
cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}\right]$, (I), has a pseudo-squareplanar coordination geometry (Fig. 1). The $\mathrm{Pt}-\mathrm{O}$ and $\mathrm{Pt}-\mathrm{S}$ bonds (Table 1) illustrate the different trans influence of the O and S atoms, which was previously observed in cis$\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}\right]$ (Hansson \& Oskarsson, 2007). The $\mathrm{Pt}-\mathrm{O}$
distances are elongated by $\sim 0.04 \AA$ compared with those in $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{4}\right]^{2-}$ (Elding \& Oskarsson, 1985) and the $\mathrm{Pt}-\mathrm{S}$ distances are shortened by $\sim 0.06 \AA$ compared with $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{4}\right]^{2+}$ (Bugarcic et al., 1991)

(I)

The two acetate ligands coordinate in a monodentate fashion via one of the O atoms, as shown by the differences in the $\mathrm{Pt} 1-\mathrm{O} 1 / \mathrm{Pt} 1-\mathrm{O} 2$ and $\mathrm{Pt} 1-\mathrm{O} 3 / \mathrm{Pt} 1-\mathrm{O} 4$ distances being more than $1 \AA$ and thus fulfilling the criterion of a difference of more than $0.6 \AA$ suggested by Kleywegt et al. (1985) for monodentate nitrate ligands. This is further supported by the differences in the $\mathrm{C} 5-\mathrm{O} 1 / \mathrm{C} 5-\mathrm{O} 2$ and $\mathrm{C} 7-\mathrm{O} 3 / \mathrm{C} 7-\mathrm{O} 4$ distances, which are approximately $0.1 \AA$ (Table 1). Both acetate ligands are oriented almost perpendicular to the coordination plane, as shown by the torsion angles $\mathrm{S} 2-\mathrm{Pt} 1-$ $\mathrm{O} 1-\mathrm{C} 5\left[-81.8(3)^{\circ}\right]$ and $\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{O} 3-\mathrm{C} 7\left[79.9(3)^{\circ}\right]$, and the noncoordinated atoms O 2 and O 4 are both on the same side of the coordination plane. In the corresponding cis[$\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2} L_{2}$] complexes, seven have nitrate ions on opposite sides, five on the same side and two in the plane (Hansson \& Oskarsson, 2007). The most striking difference in behaviour between acetate and nitrate in these systems is the greater tendency of the acetate ion to form bridging polynuclear complexes compared with the nitrate ion.

The dms ligands are oriented similarly and coordinate to platinum in a semi-staggered conformation, with $\mathrm{C}-\mathrm{S} 1-$ $\mathrm{Pt} 1-\mathrm{S} 2$ and $\mathrm{C}-\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{O} 1$ torsion angles of ~ 79 and $\sim-27^{\circ}$.

The packing of the title compound features centrosymmetric dimers (Fig. 2) across ($\frac{1}{2}, 0,0$) and ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$), which are held together by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}-\mathrm{Pt}$ interactions $\left(\mathrm{H} 2 B-\mathrm{O} 1^{\mathrm{i}}=\right.$ $2.58 \AA$ and $\mathrm{H} 4 B-\mathrm{O} 3^{\mathrm{i}}=2.60 \AA$; all symmetry codes as in

Figure 1
The atom-numbering scheme for the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A stereoscopic view of the packing of the title compound. One centrosymmetric dimeric pair of complexes is visible at the centre of the cell.

Table 2). The $\mathrm{Pt} 1 \cdots \mathrm{Pt} 1^{\mathrm{i}}$ distance is 3.5868 (2) \AA, which probably also represents an attractive interaction, since the stabilizing energy of the dimer is 57 kJ (mol monomer) ${ }^{-1}$ according to density functional theory (DFT) calculations. The centres of gravity of the dimers form an I-centred monoclinic unit cell (easily seen after a suitable unit-cell transformation), i.e. each dimer is surrounded by 14 others. It is interesting to note that such a packing is common for centrosymmetric trans[$\mathrm{Pt} X_{2} L_{2}$] compounds (Hansson et al., 2006). The four carbonyl O atoms point towards neighbouring dimers and are directed along the c axis. These atoms take part in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions $\left(\mathrm{H} 2 \mathrm{~A}-\mathrm{O} 4^{\mathrm{ii}}=2.50 \AA, \mathrm{H} 4 \mathrm{C}-\mathrm{O} 2^{\mathrm{iii}}=2.62 \AA\right.$ and $\mathrm{H} 3 A-\mathrm{O} 2^{\mathrm{iii}}=2.65 \AA$; Table 2). Voids are formed at $(0,0,0)$, $\left(0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$. Six-membered rings are formed around the voids via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

A ConQuest (Bruno et al., 2002) search of the CSD for $\mathrm{Pt}^{\mathrm{II}}$ compounds with one or more dms molecules coordinated to the metal centre resulted in 44 complexes of the type [$\mathrm{Pt}^{\mathrm{II}} A_{4-n}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{n}$] (where A is any ligand), containing in total 79 dms ligands (see deposited material). Complexes with bridging dms ligands and compounds without atomic coordinates reported in the database were excluded. The angle between the two $\mathrm{Me}-\mathrm{S}$ bonds and the coordination plane was estimated using the $\mathrm{C}-\mathrm{S}-\mathrm{Pt}-A$ torsion angle (where A is cis to the $\mathrm{Me}_{2} \mathrm{~S}$ ligand and $n=1-4$). Three different behaviours are observed. Four $\mathrm{Me}_{2} \mathrm{~S}$ (5\%) ligands have both methyl groups on the same side of the coordination plane, and 15 (19\%) are close to eclipsed with one torsion angle in the range $2-12^{\circ}$. However, the staggered conformation, with torsion angles of $35-55^{\circ}$, dominates strongly (69% of the 79 reported $\mathrm{Me}_{2} \mathrm{~S}$ ligands).

Experimental

$\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2} \mathrm{I}_{2}(0.317 \mathrm{~g}, 0.554 \mathrm{mmol})$ was dissolved in acetone $(15 \mathrm{ml})$. $\mathrm{Ag}\left(\mathrm{CH}_{3} \mathrm{COO}\right)(0.192 \mathrm{~g}, 1.15 \mathrm{mmol})$ was added and the reaction
mixture stirred for 90 min . Solid AgI was removed by filtration. The pale-yellow acetone solution was left to evaporate slowly, which resulted in a yellow solid. Crystals suitable for X-ray diffraction experiments were obtained by recrystallization from a diethyl etherethanol mixture ($2: 1 \mathrm{v} / \mathrm{v}$). DFT calculations were performed at the s-VWN level with the basis sets def-TZVPP for Pt, TZVPP for S and O , and $6-31 \mathrm{G} *$ for C and H atoms, using the software TURBOMOLE 5.5 (Alrichs et al., 1989).

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{2}\right]$
$M_{r}=437.43$
Monoclinic, $P 2_{1_{1}} / c$
$a=8.7306$ (5) \AA
$b=10.3274$ (5) \AA
$c=15.5205$ (9) A
$\beta=105.623$ (3) ${ }^{\circ}$

Data collection

Oxford Diffraction Xcalibur3 diffractometer
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.115, T_{\text {max }}=0.629$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.073$
$S=0.97$
4530 reflections

$$
V=1347.69(13) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=10.71 \mathrm{~mm}^{-1}$
$T=295$ (1) K
$0.28 \times 0.12 \times 0.05 \mathrm{~mm}$

12845 measured reflections
4530 independent reflections
3389 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{O} 1$	$2.032(3)$	$\mathrm{Pt} 1-\mathrm{S} 2$	$2.2559(10)$
$\mathrm{Pt} 1-\mathrm{O} 3$	$2.043(3)$	$\mathrm{Pt} 1-\mathrm{S} 1$	$2.2633(10)$
$\mathrm{Pt} 1 \cdots \mathrm{Pt} 1^{\mathrm{i}}$	$3.5868(2)$		
			$88.61(9)$
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{O} 3$	$84.94(13)$	$\mathrm{O} 3-\mathrm{Pt} 1-\mathrm{S} 1$	$94.21(4)$
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{S} 2$	$92.04(10)$	$\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{S} 1$	$124.8(3)$
$\mathrm{O} 3-\mathrm{Pt} 1-\mathrm{S} 2$	$176.24(9)$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{Pt} 1$	$120.4(3)$
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{S} 1$	$171.97(9)$	$\mathrm{C} 7-\mathrm{O} 3-\mathrm{Pt} 1$	

Symmetry code: (i) $-x+1,-y,-z+2$.

Table 2
Hydrogen-bond and short-contact geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.58	$3.216(5)$	124
$\mathrm{C} 4-\mathrm{H} 4 B \cdots 3^{\mathrm{i}}$	0.96	2.60	$3.392(6)$	139
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.50	$3.425(6)$	163
$\mathrm{C} 4-\mathrm{H} 4 C \cdots \mathrm{O} 2^{i i i}$	0.96	2.62	$3.479(6)$	150
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.96	2.65	$3.552(7)$	156
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 2^{\mathrm{iv}}$	0.96	3.12	$3.996(6)$	153

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x, y-\frac{1}{2}$,
$-z+\frac{3}{2}$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.

H atoms were positioned geometrically and treated as riding on the adjacent C atom $\left[\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL;
molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and enCIFer (Allen et al., 2004).

Financial assistance from The Royal Physiographic Society in Lund, the Swedish National Research Council and the Wallenberg Foundation is acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3114). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Alrichs, R., Bär, M., Häser, M., Horn, H. \& Kölmel, C. (1989). Chem. Phys. Lett. 162, 165-169.
Basato, M., Biffis, A., Martinati, G., Tubaro, C., Venzo, A., Ganis, P. \& Benetollo, F. (2003). Inorg. Chim. Acta, 355, 399-403.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brandenburg, K. (2000). DIAMOND. Version 2.0. Crystal Impact, Bonn, Germany.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Bugarcic, Z., Norén, B., Oskarsson, A., Stålhandske, C. \& Elding, L. (1991). Acta Chem. Scand. 45, 361-366.
Elding, L. I. \& Oskarsson, Å. (1985). Inorg. Chim. Acta, 103, 127-131.
Hansson, C., Carlson, S., Giveen, D., Johansson, M., Yong, S. \& Oskarsson, Å. (2006). Acta Cryst. B62, 474-479.

Hansson, C. \& Oskarsson, A. (2007). Acta Cryst. C63, m465-m468.
Kleywegt, G. J., Wiesmeijer, W. G. R., van Driel, G. J., Driessen, W. L., Reedijk, J. \& Noordik, J. H. (1985). J. Chem. Soc. Dalton Trans. 10, 2177-2184.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Version 171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. University of Göttingen, Germany.

